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Abstract

This project investigates the use of generative adversar-
ial networks (GANs) for synthesizing original album cover
art conditioned on lyrical content. We construct a custom
multimodal dataset comprising albums released between
2005 and 2024, compiled from Wikipedia, Spotify, and Ge-
nius, to enable text-to-image learning. Our baseline model
is a conditional Deep Convolutional GAN (DCGAN), which
we extend with several architectural and training modifica-
tions, including CLIP-based text embeddings, CLIP-guided
loss, and spectral normalization. The objective is to gen-
erate visually coherent album covers that reflect the the-
matic and emotional characteristics of the corresponding
lyrics. We evaluate model performance using Fréchet In-
ception Distance (FID) and Inception Score (IS), and find
that both architectural refinement and CLIP-based condi-
tioning contribute meaningfully to generation quality. Our
best-performing model combines a refined GAN architec-
ture with CLIP embeddings and contrastive loss, achieving
an FID of 131.66 and an IS of 4.79, outperforming all base-
line variants across both metrics.

1. Introduction

The intersection of music and visual art offers rich cre-
ative possibilities, particularly in the context of making al-
bum cover art, the entire album’s artistic concept and the
artist’s identity condensed in one single image. In the age
of streaming and digital music browsing, the album cover
can directly influence people’s choice of music and have
a deciding impact on the number of clicks and listeners a
song gets, but making album cover art could be difficult,
especially for independent or non-professional artists short
on time and resources. Therefore, we want to leverage the
power of deep generative models to generate album cover
art that visually captures the emotion, tone, and style con-
veyed by the music. Our algorithm takes as inputs the title
of an album, the titles of songs in the album and their cor-

responding lyrics. We then use a DCGAN conditioned on a
text embedding combining a summary of the album’s lyrics,
its overall sentiment, title, and release year to output a pre-
dicted album cover. The model is trained on a dataset of
real album covers that we put together and their associated
textual features.

1.1. Literature Review

Generative Adversarial Networks (GANs), introduced
by Goodfellow et al. (2014) [2], have become a founda-
tional framework in image generation tasks. A GAN con-
sists of two competing neural networks—a generator and
a discriminator. The generator learns to produce plausi-
ble data samples, while the discriminator attempts to dis-
tinguish between real and generated samples. Through this
adversarial process, the generator progressively improves,
ultimately learning to synthesize realistic outputs that ap-
proximate the distribution of the training data.

Subsequent advancements have significantly enhanced
the original GAN architecture in terms of image quality
and resolution. For instance, Denton et al.[1] and Kar-
ras et al.[5] introduced models and training methods ca-
pable of generating images with higher fidelity and finer
detail. Among these developments, Deep Convolutional
GANs (DCGANs) have emerged as a particularly effective
variant for image generation. DCGANs, proposed by Rad-
ford et al. (2015) [10], incorporate convolutional layers in
the discriminator and convolutional-transpose layers in the
generator, which enable the model to learn hierarchical im-
age features more effectively than fully connected layers.
This makes DCGANs well-suited for visually complex gen-
eration tasks such as album cover synthesis.

The use of GANs for album cover generation has
attracted increasing research interest. Stoppa et al.
(2022) [13] applied a DCGAN and a StyleGAN, as pro-
posed by Karras et al. (2019) [7], to a dataset of approxi-
mately 80,000 album covers, demonstrating that while the
model can learn to produce stylistically coherent outputs,
it struggles to generate high-resolution images that capture
fine-grained details. They identified a trade-off between
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model scalability and visual fidelity: increasing the reso-
lution can lead to either excessive training times or degra-
dation in feature learning due to architectural limitations.
Other researchers attempt to generate album covers con-
ditioned on a variety of side information: Hepburn et al.
(2017) [3] used an Auxiliary Classifier GAN (AC-GAN ar-
chitecture) to condition covers on the genre label; Marien et
al. (2022) [8] proposed a novel deep-learning framework to
generate cover art guided by audio features.

In contrast to these approaches, we are particularly in-
terested in conditioning our model on free-form textual in-
puts—specifically, song lyrics. While traditional condi-
tional GANs often rely on discrete class labels, integrat-
ing free-form text presents a greater challenge. Reed et al.
(2016) [11] proposed a conditional GAN that generates im-
ages of birds and flowers from natural language descriptions
by conditioning a DCGAN on text embeddings produced by
a hybrid character-level convolutional recurrent neural net-
work (char-CNN-RNN). Their work illustrates that condi-
tioning on textual features can yield high-quality, semanti-
cally relevant images.

However, lyrics differ significantly from the concise and
visually grounded captions used by Reed. Lyrics are often
abstract, metaphorical, and repetitive, making them more
difficult to map directly onto visual representations. More
recently, Contrastive Language–Image Pretraining (CLIP),
introduced by Radford et al. (2021) [9], has emerged as a
powerful method for learning joint representations of im-
ages and text. CLIP learns a joint image–text embed-
ding space through contrastive pretraining on large-scale
image–text pairs. Its ability to produce semantically rich,
high-dimensional embeddings from free-form text makes it
particularly well-suited for conditioning generative models
on complex inputs such as song lyrics.

Together, these prior works provide a foundation for our
approach: leveraging DCGANs for image synthesis, incor-
porating textual conditioning inspired by prior conditional
GANs, and addressing the novel problem of translating lyri-
cal and musical content into coherent visual outputs.

2. Dataset
To our knowledge, no publicly available dataset jointly

provides album cover images alongside corresponding
metadata such as titles, lyrics, and release information. To
address this gap, we curated a custom multi-modal dataset
spanning the years 2005-2024 by aggregating data from
Wikipedia, Spotify, and Genius. The collection process was
structured as a modular five-stage pipeline:

Metadata Extraction. We began by scraping the “List
of YEAR albums” pages on Wikipedia, covering a 20-year
span (2005–2024). These pages follow a relatively consis-
tent tabular format, enabling us to systematically extract the

artist name, album title, and genre for each entry. Special
handling was implemented for years with non-standard for-
matting.

Title Normalization. To ensure consistent downstream
querying, we performed lightweight text normalization on
album and artist names. This included stripping whitespace
and removing bracketed or parenthetical suffixes containing
phrases such as “Deluxe Edition” or “album.”

Lyrics and Cover Retrieval. For each cleaned album-
artist pair, we queried the Spotify API to retrieve metadata,
including the cover image URL and tracklist. Album cover
images were downloaded at the highest available resolution.
We then searched Genius using each song title and artist
name to collect lyrics, saving each song’s text individually.

Data Organization. The final dataset is organized by
year. Each year is associated with a CSV index containing
album-level metadata, and each album is stored in a dedi-
cated directory containing the cover image and a collection
of plain-text lyric files—one per track.

Lyrics Post-Processing. Raw lyrics obtained from Ge-
nius often contain structural tags (e.g., [Verse 1],
[Chorus]). We removed such markup and standardized
the text to retain only the lyrical content. These cleaned
lyrics are used for all subsequent modeling and embedding.

Limited by the total number of listed albums as well as
the availability of cover art and relevant album metadata,
we end up with a dataset of 12885 albums across 20 years,
which we then randomly split into fixed train/validation/test
sets by a ratio of 80/10/10.

3. Method
We begin with a baseline conditional Generative Adver-

sarial Network for generating album cover art from textual
metadata and incrementally introduce architectural, repre-
sentational, and training enhancements to assess their im-
pact. Our goal is to systematically evaluate how specific de-
sign choices affect both visual fidelity and semantic align-
ment with the input text.

This section details the components of our baseline and
improved variants along three axes:

1. The choice of text embedding φ(t) used to condition
both the generator G and discriminator D.

2. The inclusion of a CLIP-based contrastive loss to
explicitly encourage alignment between generated im-
ages and textual prompts.

3. The choice of model architecture and training strat-
egy used to improve stability and output quality.
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3.1. Baseline GAN

Our baseline follows the conditional DCGAN architec-
ture introduced by Reed et al. [11]. The generator G re-
ceives a random noise vector z ∼ N (0, I) and a text em-
bedding φ(t). The embedding is passed through a fully con-
nected projection and concatenated with z. This latent vec-
tor is mapped to a 4×4×512 feature map via a dense layer,
and then progressively upsampled using transposed convo-
lutions. The number of upsampling layers is adjusted based
on the target image resolution (e.g., 5 layers for 128 × 128
outputs). Batch normalization and ReLU are applied after
each layer, and a final tanh activation generates RGB out-
puts in [−1, 1].

The discriminator D processes images through a stack
of strided convolutional layers (with optional batch normal-
ization), reducing the spatial resolution to 4 × 4. The text
embedding is projected, broadcasted spatially, and concate-
nated channel-wise with the image feature map. A series of
1× 1 and 4× 4 convolutions yield a real/fake classification
score. Leaky ReLU activations are used throughout. No
spectral normalization is applied in this variant.

MiniLM Fusion Embedding. This approach con-
structs a 1152-dimensional embedding by concatenating
three 384-dimensional vectors generated using the
all-MiniLM-L6-v2 model:

• A summary of the album’s lyrics produced via a BART
summarizer (facebook/bart-large-cnn).

• The top-3 emotions detected in the lyrics
using a RoBERTa-based emotion classifier
(nateraw/bert-base-uncased-emotion).

• A title+year descriptor, formatted as a short prompt.

Each component is encoded separately and their [CLS] to-
kens are concatenated to form the final album embedding
φ(t), which remains fixed throughout training.

Losses. Every model uses a generator G and discrimina-
tor D trained under a conditional GAN framework. The
generator is conditioned on a text embedding φ(t) that en-
codes album metadata, and the discriminator receives both
an image and its associated text embedding.

• Adversarial Objective. We adopt the non-saturating
GAN loss for both G and D, formulated as:

LD = − Ex,t[logD(x, φ(t))]

− Ez,t[log(1−D(G(z, φ(t)), φ(t)))]
(1)

LG = −Ez,t[logD(G(z, φ(t)), φ(t))] (2)

This drives the generator to produce images indistin-
guishable from real ones, conditioned on the same text
prompt.

• Reconstruction Loss (L1). To encourage low-level
structural similarity between real and generated im-
ages, we include an L1 loss:

LL1
= λ1 · ∥G(z, φ(t))− x∥1 (3)

• Feature Matching Loss (L2). Additionally, we pe-
nalize differences between discriminator feature acti-
vations on real and generated images. Let fD(·) de-
note an intermediate feature map in the discriminator;
then:

LL2
= λ2 · ∥fD(G(z, φ(t)))− fD(x)∥22 (4)

This stabilizes training and improves perceptual qual-
ity by matching higher-level feature statistics.

The total generator loss combines all applicable compo-
nents:

Ltotal
G = LG + LL1

+ LL2
(5)

3.2. CLIP

A unique challenge in our project is developing or adapt-
ing a text embedding strategy that captures the emotive and
thematic content of lyrics in a way that is useful for con-
ditioning image generation. To address this, we incorporate
CLIP-based augmentations in two ways: PromptFusion em-
beddings and a contrastive CLIP loss.

PromptFusion Embedding (CLIP-based). This method
uses the CLIP text encoder (ViT-B/32) to produce a struc-
tured 1536-dimensional embedding by encoding three dis-
tinct prompts:

• “Album title: X”

• “Lyrics summary: Y” (generated by LongT5)

• “Top three sentiments: joy, sadness, anger” (predicted
by RoBERTa)

Each prompt is tokenized and encoded independently. The
resulting 3 vectors (each 512-D) are concatenated:

φ(t) = CLIP(ttitle) ∥ CLIP(tsummary) ∥ CLIP(tsentiments)

This design preserves semantic separation and leverages
CLIP’s joint vision-language space without fine-tuning.

CLIP-Based Contrastive Loss. In models using CLIP
embeddings, we optionally add a contrastive loss that aligns
the generated image and input prompt in CLIP’s joint vi-
sion–language space to the total generator loss given by
Equation 5:

LCLIP = −λclip · cos (ψ(G(z, φ(t))), φCLIP(t)) (6)

Here, ψ(·) is the frozen CLIP image encoder, and φCLIP(t)
is the normalized CLIP-encoded text prompt.
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3.3. Refined GAN

The refined GAN builds upon the existing baseline
model with several enhancements for training stability and
sample fidelity. Table1 highlights the key design choices
and differences.

Spectrally Normalized GAN with CLIP Conditioning
and Augmentation. The generator receives a noise vector
z and a 1536-dimensional CLIP embedding φ(t). Embed-
ding is projected via a single-layer MLP and concatenated
with z. A dense layer maps the joint vector to a 4× 4× 512
tensor. Upsampling is performed via bilinear upsampling
followed by 3 × 3 convolutions, batch normalization, and
ReLU. This avoids checkerboard artifacts associated with
transposed convolutions. The number of upsampling blocks
is adaptive to image size, supporting 64 × 64, 128 × 128,
and 256× 256 outputs.

The descriminator processes inputs through a stack of
spectral-normalized convolutional blocks with progressive
downsampling to 4 × 4. Global average pooling is applied
to the final feature map to extract a 512-D image representa-
tion. The CLIP embedding is projected into the same space
and combined with the pooled feature via an inner product,
forming a conditional score. A second real/fake score is
computed directly from the feature map via a 4×4 spectral-
normalized convolution, and the final discriminator output
is the sum of both.

AugmentPipe and ADA. We incorporate an adaptive
augmentation pipeline that applies color jitter, rotation, and
blur with a tunable augmentation strength p ∈ [0, 1]. The
value of p is dynamically adjusted during training based on
the discriminator’s confidence on real data, following Kar-
ras et al. [6]. The augmentation is differentiable and mixes
original and transformed images:

xaug = (1− p) · x+ p · T (x)

Mixed Precision and Checkpointing. The refined GAN
supports automatic mixed precision (AMP) and includes ro-
bust checkpointing of model weights, optimizer states, and
ADA parameters, enabling safe recovery and reproducibil-
ity.

3.4. Quantitative Metrics

Since adversarial training losses (e.g., generator and dis-
criminator loss) are known to correlate poorly with percep-
tual quality and reflect progress of the models, we rely on
two widely used quantitative metrics to assess the fidelity
and diversity of the generated album covers: the Incep-
tion Score (IS) and the Fréchet Inception Distance (FID). IS
evaluates how confidently and distinctly images are classi-
fied by an Inception network, thereby capturing both image

Table 1. Comparison of the Baseline cDCGAN and our refined
variant.

Component Baseline Refined

Text Embedding MiniLM (3 × 384-D) CLIP ViT-B/32 (3 × 512-D)
Embedding Fusion Concatenation Concatenation
Generator Upsampling Transposed conv Bilinear upsampling + conv
Discriminator Downsampling Strided conv + BN Spectral norm conv
Condition Injection Spatial concat @ 4× 4 Inner product after pooling
Spectral Normalization x ✓
Adaptive Data Aug. (ADA) x ✓
Mixed Precision (AMP) x ✓
Loss Function BCE + L1 + L2 BCEWithLogits + L1 + L2

quality and diversity, while FID measures the distributional
similarity between generated and real images in a pretrained
feature space.

Inception Score (IS). IS [12] evaluates both the visual
quality and diversity of generated samples. It is defined as:

IS = exp
(
Ex∼pg

[DKL(p(y|x)∥p(y))]
)
, (7)

where p(y|x) is the predicted label distribution from an In-
ception classifier for a generated image x, and p(y) is the
marginal class distribution. High IS indicates that gener-
ated images are both sharp (low-entropy p(y|x)) and diverse
(high-entropy p(y)).

Fréchet Inception Distance (FID). FID [4] measures the
similarity between the distributions of real and generated
images in the feature space of a pretrained Inception net-
work. Assuming both feature distributions are Gaussian,
FID is computed as:

FID = ∥µr − µg∥2 +Tr
(
Σr +Σg − 2(ΣrΣg)

1/2
)
, (8)

where (µr,Σr) and (µg,Σg) denote the means and covari-
ances of the real and generated image features, respectively.
Lower FID indicates better alignment with real image statis-
tics.

4. Experiments
We evaluate five model variants that systematically vary

in architecture, text conditioning method, and the inclusion
of CLIP-based contrastive loss. These include: the base-
line conditional GAN with MiniLM embeddings, a version
with CLIP embeddings, and a further extension with CLIP
contrastive loss; as well as our proposed refined GAN ar-
chitecture with and without contrastive loss (see table 2 for
summary).

All models are trained for 350 epochs with a batch size
of 64 in consideration of training speed and cost. We
use the Adam optimizer (β1 = 0.5, β2 = 0.999) with
(β1 = 0.5, β2 = 0.999), a common choice in GAN litera-
ture for stabilizing adversarial updates. For the refined mod-
els, we adopt the Two-Time-Scale Update Rule (TTUR), us-
ing separate learning rates for the generator (1× 10−4) and
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discriminator (4×10−4) to encourage faster convergence of
the discriminator in early training. We use mixed precision
(AMP) to improve training speed and memory efficiency.
The reconstruction loss coefficients are fixed at λL1

= 50
and λL2

= 100 to strongly regularize the generator toward
structural realism and feature-level fidelity. The CLIP con-
trastive loss coefficient is annealed from 5.0 to 15.0 across
training epochs to allow early-stage convergence before in-
troducing stronger semantic alignment signals.

Table 2. Summary of model variants evaluated. We compare two
architectures (Baseline vs. Refined), two types of text embedding
(MiniLM vs. CLIP), and optional CLIP-based contrastive loss.

Model Name Arch. Embedding CLIP Loss

Baseline Baseline MiniLM x
Baseline + CLIP Baseline CLIP x
Baseline + CLIP Loss Baseline CLIP ✓
Refined Refined CLIP x
Refined + CLIP Loss Refined CLIP ✓

We report FID and IS computed on the same held-out
validation set across all five model variants every 50 epochs
for 350 epochs to assess how different architectural and con-
ditioning choices affect generation performance. Note that
higher IS and lower FID are preferred.

Inception Score (IS). As shown in Figure 1, all models
exhibit steady improvement in Inception Score during the
early stages of training, though notable differences emerge
as training progresses. The Refined + CLIP Loss model
consistently achieves the highest IS, reaching above 4.8
by epoch 350, which suggests it generates higher-quality
and more semantically diverse images. The Refined model
without CLIP loss also performs competitively, highlight-
ing the effectiveness of architectural enhancements such as
spectral normalization, bilinear upsampling, and adaptive
data augmentation.

Within the baseline family of models, switching from
MiniLM to CLIP embeddings alone does not seem to alter
the performance much. However, incorporating the CLIP-
based contrastive loss yields further gains, even without
architectural changes—demonstrating that the loss compo-
nent adds measurable value. Compared to the refined mod-
els, baseline variants plateau earlier and at lower IS scores,
indicating their more limited ability to generate diverse and
coherent visual content.

Fréchet Inception Distance (FID). As shown in Fig-
ure 2, the FID curves support the trends observed in IS
while also highlighting important distinctions. The Re-
fined + CLIP Loss model consistently achieves the lowest
FID, converging to around 135 by epoch 300, indicating the
strongest alignment with the real image distribution. The

Figure 1. Inception Score (IS) over training epochs as well as the
standard deviations for all model variants. Higher values indicate
better image quality and diversity.

Refined model also performs competitively, reaching sim-
ilar values near the end of training and outperforming all
baseline variants.

Among the baseline models, the Baseline + CLIP vari-
ant shows slightly better performance than the one aug-
mented with contrastive loss. While Baseline + CLIP +
CLIP Loss initially improves over the vanilla baseline, its
FID degrades slightly in later epochs, suggesting potential
training instability introduced by the additional loss com-
ponent. The Baseline model, which featuring a sharper
decrease of FID in the beginning, exhibits increasing FID
since epoch 100, indicating a more limited capacity to ap-
proximate the real image distribution compared to the re-
fined models.

Figure 2. Fréchet Inception Distance (FID) over training epochs
for all model variants. Lower values indicate that generated im-
ages are closer to real images in distribution.

These results demonstrate that both CLIP-based con-
ditioning and architectural improvements contribute sig-
nificantly to generation quality. The best performance is
achieved by combining both in the Refined + CLIP Loss
model, which shows robust improvements across both IS
and FID (Figure 3 and 4).

In addition to quantitative evaluation, we present quali-
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Figure 3. Best Inception Score (IS) achieved by each model over
all 350 training epochs, with the bar outline of the best-performing
model highlighted in yellow.

Figure 4. Best Fréchet Inception Distance (FID) achieved by each
model over all 350 training epochs, with the bar outline of the best-
performing model highlighted in yellow.

tative results from each model variant by visualizing sam-
ples from the best-scoring epoch checkpoint, allowing for
a direct visual comparison of generative capabilities across
conditions.

Figures 6 through 10 present album covers generated by
the five model variants for the same set of 16 randomly
chosen albums with their corresponding real cover images
shown in 5. The baseline model (Figure 6) often pro-
duces noisy, abstract textures with minimal structure. Many
images exhibit washed-out or dull color palettes and lack
meaningful compositional coherence, and a few of the gen-
erated images are not very distinguishable from one another,
indicating limited diversity.

The Baseline + CLIP variant (Figure 7) shows slight
improvement in contrast and texture definition. Some im-
ages exhibit more saturated colors, such as blues and reds,
though object structure remains indistinct and some artifacts
persist.

Figure 5. A Sample of 16 Real Album Covers

Figure 6. Covers Generated by Baseline model

Figure 7. Covers Generated by Baseline + CLIP Embeddings
model

Figure 8. Covers Generated by Baseline + CLIP Embeddings +
CLIP Loss model

Figure 9. Covers Generated by Refined model

Figure 10. Covers Generated by Refined + CLIP Loss model

Introducing the CLIP contrastive loss (Figure 8) leads
to moderate gains in sharpness and local structure. While
the generated images are still abstract, a few samples
suggest loosely interpretable forms—such as symmetrical
patches, central focal blobs, or faint outlines. Color usage
also appears more varied.

The Refined model without CLIP loss (Figure 9) pro-
duces cleaner textures and more consistent visual patterns.
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Bilinear upsampling and architectural modifications appear
to reduce checkerboard artifacts, and a few images display
bold shapes and centered color blobs that resemble abstract
cover design motifs.

Finally, the Refined + CLIP model (Figure 10) offers
the most coherent samples overall. Colors are more vivid,
several images show distinct zones or layered patterns, and
some exhibit loosely frame-like or portrait-like symmetry.
Despite these improvements, most images remain abstract
and do not yet reach photorealism or detailed semantic
alignment.

Overall, we observe that architectural refinements and
CLIP-based supervision contribute complementary im-
provements—particularly in terms of visual coherence, sat-
uration, and abstract structure.

5. Conclusions
In this work, we systematically evaluated how architec-

tural design choices, text embedding strategies, and multi-
modal supervision affect the quality of text-conditioned im-
age generation for the task of album cover synthesis. Start-
ing from a baseline conditional GAN using MiniLM em-
beddings, we introduced CLIP-based conditioning and a re-
fined GAN architecture that incorporates spectral normal-
ization, adaptive data augmentation, and improved condi-
tioning injection.

Our experiments demonstrate that each enhancement
contributes to improved generative performance, as mea-
sured by both Fréchet Inception Distance (FID) and Incep-
tion Score (IS). The refined architecture proves more robust
and stable across training, while CLIP-based embeddings,
when paired with a contrastive loss, significantly improve
semantic alignment between text and image. Notably, the
Refined + CLIP Loss model consistently achieves the best
quantitative results and produces more coherent, visually
distinct outputs. These findings highlight the importance of
combining principled architectural refinements with seman-
tically rich conditioning for text-to-image synthesis tasks.

While our CLIP-guided GAN framework demonstrates
interesting results, several directions could further improve
performance and flexibility. Future work may explore
more effective fusion of textual modalities using cross-
attention or multi-branch conditioning to better capture
the roles of lyrics, title, and sentiment. Hierarchical or
multi-stage architectures could improve compositional co-
herence and visual detail. Beyond generation, supporting
user-guided editing through prompts or interactive feed-
back—potentially via diffusion models or reinforcement
learning—would enable greater control. More comprehen-
sive evaluation, including more human reviews of generated
results or task-specific metrics, could offer deeper insights.
Finally, expanding the dataset to include more albums, gen-
res, languages, or style-specific models may enhance diver-

sity and generalizability.
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